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Divergent connectomic 
organization delineates genetic 
evolutionary traits in the human 
brain
Elisenda Bueichekú1, Jose M. Gonzalez‑de‑Echavarri1,2, Laura Ortiz‑Teran1,3, 
Victor Montal1,4,5, Federico d’Oleire Uquillas1,6, Lola De Marcos1,7, William Orwig1, 
Chan‑Mi Kim1,8, Elena Ortiz‑Teran1,9, Silvia Basaia1,10, Ibai Diez1,8 & Jorge Sepulcre1,8*

The relationship between human brain connectomics and genetic evolutionary traits remains elusive 
due to the inherent challenges in combining complex associations within cerebral tissue. In this study, 
insights are provided about the relationship between connectomics, gene expression and divergent 
evolutionary pathways from non-human primates to humans. Using in vivo human brain resting-
state data, we detected two co-existing idiosyncratic functional systems: the segregation network, 
in charge of module specialization, and the integration network, responsible for information flow. 
Their topology was approximated to whole-brain genetic expression (Allen Human Brain Atlas) and 
the co-localization patterns yielded that neuron communication functionalities—linked to Neuron 
Projection—were overrepresented cell traits. Homologue-orthologue comparisons using dN/dS-ratios 
bridged the gap between neurogenetic outcomes and biological data, summarizing the known 
evolutionary divergent pathways within the Homo Sapiens lineage. Evidence suggests that a crosstalk 
between functional specialization and information flow reflects putative biological qualities of brain 
architecture, such as neurite cellular functions like axonal or dendrite processes, hypothesized to 
have been selectively conserved in the species through positive selection. These findings expand our 
understanding of human brain function and unveil aspects of our cognitive trajectory in relation to our 
simian ancestors previously left unexplored.

Human beings display a broad variety of cognitive and behavioral features that make us exceptional among 
primates. Due to this distinctive psychobiological profile, the similarities and differences between human and 
non-human primate brains have been studied extensively1–8. Compared to non-human primates, the human 
brain has undergone numerous biological changes in the span of the last five to seven million years8. On one 
hand, biological similarities have been found between humans and non-human primates in terms of their genetic 
code and their molecular and cellular features9. Conversely, several investigations have provided evidence for a 
divergent evolutionary pathway that humans took with respect to non-primates, leading to advanced cognitive 
features and distinct behaviors10. However, the detailed relationships between basic human brain connectomics 
and its genetic evolutionary traits remain elusive due to the challenges in combining complex associations within 
the cerebral tissue. In the present work, we contribute new insights to these challenges by investigating the link 
between the human functional connectome and genome features of the Homo Sapiens lineage compared to seven 
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other non-human primates, using a recently developed graph-analytical approach that explores the segregation 
and integration properties of the brain.

Some other studies posit that the brain prioritizes a state of optimum information processing flow by balanc-
ing the amount of segregation and integration within its functional modules11–13. It seems that the brain is in a 
state of dynamic adaptation of these functional modules, which can be measurable by means of functional con-
nectivity. Thus, first aim involved investigating functional connectivity organization patterns or the way discrete 
groups of neurons communicate composing segregated modules and, in turn, tracking in time the interactions 
between modules or the integration processes that lead to sensory, motor and cognitive systems. From a broader 
perspective the segregation and integration processes within the whole brain’s functional connectivity network—
simultaneously incorporating novel information into current processing streams while not disrupting the system 
at the overall organization and energy levels—could have been pivotal for the survival of the species. Yet, the 
question of the biological relationship between this sophisticated system and the evolution of the Homo Sapiens 
species remains elusive. The combination of connectomics and genetics present the opportunity to explain this 
relationship from a functional and evolutionary perspective.

Recent research in humans has successfully linked cortical gene expression and neuroimaging connectivity 
data across a variety of topics14–31. Additionally, discovering the similarity between small-world networks and 
the brain as a complex network system32–34 has been a major advancement for better understanding brain sys-
tems functioning. This discovery led to the characterization of network properties using graph-based analytical 
approaches (e.g.,35–38). Moreover, graph theory principles have helped advance the field of cognitive neuroscience 
to formalize connectivity principles28,39, making it possible to quantitatively define its hierarchical spatial organi-
zation and temporal dynamics25,40,41. Furthermore, resources such as the Allen Human Brain Atlas (AHBA42) 
have presented new possibilities to link neuroimaging phenotypes and in situ brain genetic information, offering 
whole-brain genome-wide expression patterns27,42.

Here we have incorporated our connectomic-genetics integration approach (see “Methods” section in16,25,43) 
to measure genetic adaptation across years of evolution, namely, the dN/dS ratio. The dN/dS ratio (or Ka/Ks ratio) 
specifically quantifies biological selection by taking into account the rate of substitutions in silent and non-silent 
sites of protein sequences (e.g.,44). In this study, we propose the use of a recently developed graph-based ana-
lytical method, merging trajectory analysis toward minimal graphs, with the purpose of evaluating the different 
possible connectivity tendencies of a brain voxel, namely segregation or integration. We take one step further 
by relating the distinctive spatiotemporal functional networks to the evolution of the human brain by linking 
the connectomics information to transcriptional gene expression provided by the AHBA. This approach let us 
broad our understanding of human brain function, linking our advanced cerebral connectivity features to our 
evolutionary history from a biological perspective.

Results
Divergent trajectories of segregation and integration connectivity in the human brain.  The 
objective of the connectomics analysis was to investigate the spatiotemporal configuration of the human brain 
connectome as minimal graphs. Keeping in mind the brain connectome principles—efficiency maximization 
and energy cost minimization—we aimed to capture its segregating and integrating properties. Our voxel-wise 
merging trajectory analysis approach as applied to resting-state fMRI data (see Fig. 1-I) made it possible to syn-
thesize the spatiotemporal functional connectivity network properties of the human brain at the cortical level 
(see Fig. 1-II). The main result yielded two separate patterns of functional connectivity organization (see Fig. 1-
III). A logarithmic fit function was used to model the topology of the segregation connectivity network. We 
observed hubs within the visual and association cortices, and the network extended over lateral and medial pari-
etal cortex (including the precuneus and posterior cingulate cortex), the temporoparietal area, and the lateral 
frontal cortex (e.g., dorsolateral prefrontal cortex) with some medial frontal regions, especially the frontal pole 
(see brain maps on the left side of Fig. 1-III). An exponential fit function was used to model the topology of the 
integration connectivity network. This consisted of nodes that merged later into the functional network, such as 
posterior to anterior insular cortex, anterior cingulate cortex, temporal cortex (especially the temporal pole), and 
the medial orbitofrontal cortex (see brain maps on the right side of Fig. 1-III).

We further explored the consistency of our maps and main connectomics results by using two different 
approaches. We first applied a correction for multiple comparisons to the obtained merging trajectory analysis 
results. We projected the results without any threshold, i.e., uncorrected maps, as well as with an FDR-correction 
at q < 0.05, q < 0.001 and q < 0.000145 (see Supplementary Fig. 1). We then entirely repeated the merging trajec-
tory analysis in functional MRI data from an independent sample (see Supplementary Fig. 2). Both validation 
approaches yielded results that confirmed the original observations. All these results were projected using an 
FDR-correction q < 0.001.

Intersection between human brain connectomics, genetics and evolution.  We used AHBA to 
investigate the spatial intersection of gene expression data with topological profiles associated with segrega-
tion and integration of functional connectivity in the human brain (see Fig. 2; for the purpose of exemplifying 
this method the relationship between the mean cortical expression of the Neuron projection and the functional 
network map have been represented in Fig. 2-III). A spatial similarity analysis approach allowed us to com-
pare the entire cortical transcriptome of 20,737 genes from the AHBA, distributed across 68 different cortical 
regions from the Desikan-Killiany atlas46, with the mean connectivity segregation—integration map obtained 
in the previous analytical step. From this analysis, we obtained a null hypothesis distribution of gene expression 
levels from the AHBA. In the lower-bound (-1.96 SD), we identified 573 genes with transcriptomic expression 
associated with the topology of the brain areas related to the early mergers or segregating nodes. Similarly, in 
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the upper-bound (+ 1.96 SD), we identified 400 genes with transcriptomic expression associated with the late 
mergers or integrating nodes (see Fig. 2-I; the list of genes associated with the lower or upper bound appear in 
Supplementary materials Tables 1 and 2). The specific cellular functional components of genes were identified 
using Gene Ontology (FDR-corrected q < 0.05); see in Fig. 2-II; the list of cellular components linked to the lower 
or the upper bound of the probability distribution, and the list of genes associated with each cellular component 
appear in Supplementary materials Tables 3, 4, 5 and 6. Bearing in mind the purpose of this work, after con-

Figure 1.   Graph merging trajectories on brain networks (I) Neuroimaging data. Whole-brain functional MRI 
data measured as low frequency blood oxygenation level-dependent signal couplings of the cerebral cortex were 
recorded at the voxel level. Graph functional connectivity analysis at the node level was conducted, obtaining 
connectivity networks at the subject level. (II) Connectomics analyses. An example of our graph merging 
analysis approach is depicted (upper part in II), illustrating spatiotemporal organization changes in the brain 
functional networks. (1) Brain nodes, which are prone to be segregated into locally interconnected subsystems 
(segregating nodes or S), (2) progressively blend with other discrete nodes by means of interacting with the 
merging nodes (integrating nodes or I), (3) until integrating themselves into complex systems (i.e., growing 
nodes), (4) and finally result in organized large-scale networks or brain systems. The merging trajectory analysis 
(lower part in II) allows for the investigation of the reorganization of the human brain functional networks 
from a more segregated to a more integrated state. This analysis was based on implementing logarithmic 
and exponential curve fitting models after investigating the cumulative node-to-node relations, making it 
possible to differentiate brain regions prone to merge earlier from those likely to blend later. (III) Topological 
representations. Brain maps projections reflecting the networks’ spatial distribution after applying the graph 
merging trajectory analysis to the functional connectivity human brain data: on the left, the early trajectory 
mergers or the segregating nodes were discriminated after implementing a logarithmic curve fitting model; 
on the right, the late trajectory mergers or the integrating nodes were differentiated from the early ones after 
using an exponential curve fitting model. Note: All the individual and group-level analyses were done adopting 
a whole-brain voxel-level approach and all of them were corrected for multiple comparisons using a False 
Discovery Rate approach (voxel-wise FDR q < 0.05). BOLD Blood oxygenation level-dependent, S Segregating 
node, I Integrating node, Log. Fit Logarithmic curve fitting model, Exp. Fit Exponential curve fitting model, R 
Right hemisphere, L Left hemisphere.
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ducting a curve fitting estimation analysis to relate the connectomics-genetics profiles to evolutionary aspects, 
we found that the functionalities related to neuron communication were the most relevant results, for example, 
Neuron Projection or Synapse, that are closely related to axonal and dendrite processes. As a mean subtraction 
functional connectivity map was used to draw associations between connectomics and genetics, the genetic 
expression of the neuronal communication processes involved in the Neuron projection would be positively 
related to brain areas linked to integration, while less expression of these genes is found in modular or highly 
segregated areas (see Supplementary materials Table 7).

Figure 2.   Linking brain functional organization to genetic expression. (I) Spatial similarity analysis. On the 
left, a representation of the whole-brain human transcriptome information from the Allen Human Brain Atlas 
(AHBA) distributed in the Desikan-Killiany (DK) atlas surface anatomical transformation is offered. The genetic 
data was organized in a bi-dimensional matrix that contained the cortical expression of 20,737 protein-coding 
genes from the AHBA by 68 cortical brain regions, the parcellation obtained from the DK atlas. On the right, the 
results of the spatial similarity are shown. Spatial comparisons were done between the mean connectivity map—
resulting from subtracting the mean connectivity maps corresponding to the early and late trajectory mergers—
and cortical gene expression maps from all genes of the AHBA transcriptome. A threshold set at ± 1.96 standard 
deviation above or below the mean was used to identify the genes with statistically significant similarity scores. 
In the histogram, the area highlighted in blue corresponds to the early trajectory mergers, while the area in red 
represents the late trajectory mergers. (II) Enrichment analyses. Using data from the Gene Ontology resource 
we investigated the cellular components linked to the genes related to the early or late trajectory mergers. In the 
radar chart, the blue dots represent the cellular components associated with brain areas showing an integrating 
predominance, and the red dots represent those components associated with brain areas displaying a segregating 
predominance. The numbers inside the radar chart are the p values. The results are statistically significant 
and corrected for multiple comparisons (FDR q < 0.05). (III) Ontologic Insights of Segregators-Integrators. 
The relationship between the trajectory mergers mean connectivity map and the brain map capturing the 
cortical expression of the neuron projection has been illustrated. A high correlation is found between these 
two maps, indicating that brain areas with integrating tendency are related to the expression of the neuron 
projection cellular component. In relation to the trajectory mergers mean connectivity map, brain areas in red 
tones are related to segregation while blue tones are related to integration. The same color scheme was used 
for the neuron projection brain map and the line chart, where warmer tones indicate higher gene expression. 
(IV) Phylogenetic insights of segregators-integrators. The line chart and the coefficient of determination (R2) 
represent the regression analysis results that explored the relationship between the most significant cellular 
component namely Neuron Projection and important evolutionary events for the Homo Sapiens lineage (i.e., 
the X axis represents divergent moments expressed in million years ago). This evolutionary event, highlighted 
in purple tones, reflect the emergence of separation of species from oldest (i.e., marmoset, 42.6 MYA) to 
newest (i.e., human, 8.8 MYA). Note: Color scale represents the 2–98% of the normalized connectivity data. R 
Right hemisphere, L Left hemisphere, S–I Segregating–integrating nodes; + S Segregation predominance, + I 
Integration predominance, sc Spatial correlation or spatial similarity, std Standard deviation, GO GeneOntology, 
dN/dS Biological selection ratio, DNA Deoxyribonucleic acid.
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After obtaining the list of the cellular components associated with the genetic profiles linked to the two 
connectivity networks, the evolutionary aspect of these neurogenetic relationships were investigated. Using 
the discovered set of genes related to each connectivity profile and enrichment annotation, as well as the dN/
dS ratio for each simian species, evolutionary aspects were studied between the Homo Sapiens and seven other 
non-human primate species (i.e., the chimpanzee, the gorilla, the orangutan, the macaque, the olive baboon, 
the vervet AGM, and the marmoset) (see Fig. 2-IV). Curve fitting models were used to explore the neurogenetic 
biological insights of the simians’ phylogeny. Bearing in mind the purpose of our study, we highlight the results 
regarding neuron communication functionalities, for instance: Neuron Projection components, we found the 
following curve-fitting: F = 30.99 p < 0.003 R2 = 0.86; and Synapse components, F = 30.53 p < 0.003 R2 = 0.85. All 
curve-fitting model results are summarized in Supplementary materials Table 7. Additionally, the robustness of 
these analyses was tested using a random permutation analysis approach. As described in the methods section, 
one-hundred iterations were calculated to obtain adjusted models for each component [adjusted determination 
coefficients (R2) with corrected p value]. The permutation analysis results confirmed some of the components, 
highlighting those related to neuron communication (Neuron projection p < 0.001; Synapse p = 0.004). The per-
mutation analysis results are summarized in Supplementary materials Table 7.

Discussion
The human brain orchestrates cognitive and behavioral features that differ from non-human primates but are 
rooted in common ancestors. In this study, we sought to uncover specific links between the functional spatiotem-
poral organization of the human brain, measured by means of rs-fMRI, and the evolution of the Homo Sapiens 
lineage at the biological level, using gene expression information from AHBA, gene-cell relations from the Gene 
Ontology resource and evolutionary divergent data from the Ensembl-BioMart online database. We developed 
a graph-theory analytical approach to characterize functional connectivity in a link-by-time manner, then, the 
cortical expression of protein-coding genes spatially related to the discovered networks was studied, as well as 
the cellular functionalities of these genes. Finally, we used the obtained neurogenetic evidence to explore how 
cellular components have persisted through years of evolution in the recent Homo Sapiens phylogenetic tree. 
Although previous research in this field has been extensively developed in relation to different aspects related 
to brain size or cortical expansion (e.g.,1,3,4,6–8,47, alternative work has implicated important neurobiological 
aspects in cellular, molecular and genetic features (e.g.,8,9,48). In this sense, investigating the specialization of 
the human brain is feasible from many perspectives, one being the use of resting-state functional connectivity, 
which is sufficiently constrained by anatomical connectivity to be a reliable source for establishing inferences of 
brain systems’ organization46,48,49. Following this rationale, our connectomics investigation (Fig. 1) yielded two 
robust and distinct functional connectivity maps. One related to brain segregation, observed as a fast-merging 
connectivity profile comprising the association fronto-parietal cortex along with the visual cortex; and a second 
related to brain integration located at insular and temporal regions. Minimum overlap was observed between 
these divergent functional maps.

The emergence of the AHBA by the Allen Brain Institute as a resource that provides whole-brain genome-
wide transcriptional profiles27,50 has become widely known as an excellent tool for investigating the biological 
diversity of the human brain, at its molecular, functional and architectonic levels51, thus enabling connectomic-
to-genomic hypothesis testing52. In the present study, we relate the cortical gene expression available in AHBA 
to our functional connectivity networks by conducting a spatial similarity analysis (Fig. 2). We identified two 
sets of genes whose cortical expression had highly significant spatial similarity, one set of genes was more related 
to the visual and association fronto-parietal areas (i.e., the early-trajectory network), while the other was more 
associated with the insular-temporal areas (i.e., the late-trajectory network). Using the BioMart data-mining tool 
within the Ensembl software environment53, we observed that the connectomic-genetic related gene sets exhibited 
overrepresented cellular functionalities important for neuronal communication. Specifically, the Neuron projec-
tion cellular component, which involves “any process extending from a neural cell, such as axons or dendrites” 
appeared as a relevant result of the enrichment analysis. This component is associated with “the process whose 
specific outcome is the progression of a neuron projection over time, from its formation to the mature structure”. 
The expression of the genes related to Neuron projection was positively related to brain areas attached to inte-
gration, while segregation would be negatively linked to this cellular functionality. Other functionalities found 
were as well related to neuronal processes, such as Synapse, which involves “the junction between an axon of 
one neuron and a dendrite of another neuron, a muscle fiber or a glial cell”, thus, is closely related to the Neuron 
projection cellular component, and its expression could be understood in the same sense.

In classical taxonomies, simians are an infraorder of primates which, phylogenetically speaking, belong to the 
mammalia class. The simian divergent evolutionary pathway dates back to ~ 60 million years ago and contains two 
main categories of species, namely, the New World monkeys, such as the marmoset, and the Old-World monkeys, 
like the macaque, the gorilla, the chimpanzee and the human. In relation to brain structure and function, several 
hypotheses have been proposed to elucidate the origin of the observable behavioral and cognitive differences 
between humans and their close simian ancestors (for a review see54–56). Some authors have centered their efforts 
on comparing the human brain to other simians’ brain features, for example, in cortical size57,58; for a review 
see59), or in number of neurons and cellular density60. Other authors have investigated the intersection between 
genetic expression and evolutionary divergences while trying to understand which specific genetic mutations 
have led to human cognitive phenotypes61–65. In our study, we are proposing another complimentary approach 
to previous frameworks. A combination of connectomics, genetics and divergence times, could be fruitful for 
better understanding what make humans unique. We used the dN/dS ratio44—a measure of genetic adaptation 
through years of evolution—and divergence times (https://​www.​ensem​bl.​org/​info/​about/​speci​estree.​html) as 
objective measures signaling moments when key genetic and epigenetic phenomena happened as each simian 
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species evolved independently from their ancestors (e.g., the moment chimpanzees and humans separated). In 
general, the results found support that the Neuron projection functionality has been conserved through the human 
lineage, although, as the brain phenotype map used for the connectomics and genetics information represented 
both the early-mergers network and the late-mergers network, its positive expression would be related to the 
early-mergers network. Overall, it could be said that the functional products derived from the transcriptional 
expression of these protein-coding genes, which are in turn related to current spatiotemporal human brain net-
works, might have been positively selected to remain in the species due to their biological benefits in the brain. 
One possibility is that this positive selection has been key for the species to adapt and survive.

While we have been able to relate connectomics to genetic and evolutionary aspects of the human brain, we 
used a limited exploratory approach to provide some insight on this relationship. There are still several questions 
that remain unresolved and open to scientific investigation. From a neurogenetic perspective, we believe that 
upcoming research could be focused on the utility of in vivo neuroimaging techniques to expand our knowledge 
of the evolution of the human lineage. In this line, a goal would be to offer a full explanatory link between brain 
topological maps derived from connectomic approaches—as a means of describing cortical and subcortical 
functional organization—to evolutionary landmarks attached to human uniqueness, such as with the geno-
type–phenotype relation that gives rise to distinct cognitive and behavioral human features.

Conclusions
The combination of the merging trajectories connectomics approach—applied to human brain in vivo data—with 
genetic, cellular, and evolutionary data elucidates the relationship between biological adaptive changes in the 
Homo Sapiens lineage and the functional architecture of the human brain. Implementing analytical approaches 
that simplify the spatiotemporal organization of human networks while conserving most of its information and 
respecting the network properties—i.e., summarizing the brain connectome at the link-level—makes it possible 
to investigate complex network relations without changing the intrinsic features as well as adding other biological 
variables that give more complete descriptions of the origin and current configuration of the human connectome. 
Our findings suggest that a balance evolved between module segregation and systems integration at the func-
tional level. This sophisticated organizational system seems to be related to important gene-cell functions, such 
as those related to neurite cellular functions, that have been conserved through positive selection in the Homo 
Sapiens lineage. One of the challenges for evolutionary neuroimaging is linking valuable genetic information 
from Homo Sapiens lineage with neuroimaging evidence that simultaneously captures spatiotemporal complex 
properties of the human brain connectome. For instance, improving the description of the hierarchical spatial 
organization of the functional connectome into discrete modules at multiple levels of organization (intra and 
inter-modules) considering information derived from structural connectivity and, on the same time, detailing 
intrinsic dynamic properties within and between brain networks. Another challenge for future works is con-
tinuing the combination of biological variables with neuroimaging evidence—genetics/cellular, evolution and 
functional connectivity—in novel ways that could give more precise information of the individual connectome.

Methods
Participants.  The discovery sample consisted of 80 participants (43/37 F/M; mean age = 21.60 years old, 
SD = 2.89; range = 19–33 years old) from The Brain Genomics Superstruct Project database (publicly available 
in Harvard Dataverse Repository: https://​doi.​org/​10.​7910/​DVN/​25833). The replication sample consisted of 80 
participants (51/29 F/M; mean age = 21.68 years old, SD = 3.00; range = 19–31 years old) also from The Brain 
Genomics Superstruct Project database. Participants completed a full MRI and neuropsychological protocol 
(details available on66). The high-resolution anatomical scan and the resting-state scan were used in the present 
study.

Data acquisition.  According to66, images were acquired on a 3.0 Tesla Siemens TIM Trio scanner (Sie-
mens Healthcare, Erlangen, Germany) at Harvard University and the Massachusetts General Hospital using a 
12-channel phased-array head coil. The acquisitions covered the whole brain including the entire cerebellum. 
Slices were aligned to the AC-PC plane. Firstly, high-resolution T1-weighted multi-echo MPRAGE images were 
acquired as structural data (TR = 2.2 ms, TE = 1.5/3.4/5.2/7.0 ms, flip angle = 7°, 1.2 mm3 isotropic voxels, 144 
slices). Then, functional images corresponding to the resting-state scan were acquired using a gradient-echo 
EPI sequence sensitive to BOLD contrast (TR/TE = 3000/30 ms, flip angle = 85°, 3 mm3 isotropic voxels, 124 
volumes). For resting-state scans, participants were instructed to stay awake and still, with their eyes open and 
blinking normally.

Image pre‑processing.  Preprocessing was carried out using FMRIB Software Library (FSL, version 5.0.7, 
https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​FSL67), and Matlab software (version R2017a, Natick, Massachusetts: The 
MathWorks Inc. https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html). In relation to the anatomical data, MR 
images were: (i) re-oriented to the anterior commissure—posterior commissure (AC-PC) plane; (ii) brain skull 
stripped; (iii) segmented into gray matter, white matter, and cerebrospinal fluid; (iv) normalized to the Montreal 
Neurological Institute brain template (MNI152 brain template). Then, the functional MR images were processed. 
The four initial data time points of the functional MRI data sets were discarded, ensuring the signal stabilization 
in the remaining images. The preprocessing included the following steps: (i) slice timing acquisition correction 
for interleaved ascending acquisitions (using the middle slice as the reference); (ii) realignment using the mid-
dle functional volume and head motion correction using a six parameter rigid body linear transformation; (iii) 
intensity normalization; (iv) regression of noise signals: applying a 12-parameter model (6 parameters from rigid 
body linear transformation and their temporal derivative) and applying the component based method CompCor 

https://doi.org/10.7910/DVN/25833
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for the reduction of noise (with 5 parameters from cerebrospinal fluid signal and 5 parameters from white matter 
signal); (v) normalization to the MNI152 brain template (3 mm3 isotropic); (vi) smoothing with a 6 mm full-
width-at-half maximum (FWHM) isotropic Gaussian kernel; (vii) band-pass filtering retaining BOLD signal 
between 0.01 Hz and 0.08 Hz; (viii) data motion-censoring step (i.e., scrubbing of the time points with excessive 
motion) was performed through interpolation spline according to68, with the frame displacement (FD) thresh-
old set to FD > 0.5 mm—no participants had excessive head motion; (ix) finally, for computational efficiency, the 
data were down-sampled from 3 to 6 mm3 voxel size.

Image post‑processing: functional matrices.  In-house code was developed for the merging trajec-
tory analysis, run in Matlab software. All analyses reported in this section were conducted at the individual 
level. Functional matrices (r-values and p values matrices) were obtained by means of calculating the Pearson’s 
product-moment correlation coefficients of the time series in a voxel-wise and pairwise manner (see Fig. 1-I). 
For doing so, a whole-brain mask of 6185 voxels covering the entire brain, including subcortical areas and 
the cerebellum, was applied to extract the blood-oxygen-level-dependent time series. Then, positive correla-
tions were retained, and negative values were removed from the functional matrices to minimize ambiguity in 
interpretability69. The rate of false positives was corrected using a False Discovery Rate (FDR) approach45 and a 
correction threshold of q < 0.001 at the voxel level. FDR-correction was applied to the individual p values matri-
ces, allowing to retain the r-values associated with the corrected p values (please see in Supplementary Fig. 1 
other approaches: (i) uncorrected matrices, (ii) FDR-correction threshold of q < 0.05, and (iii) FDR-correction 
threshold of q < 0.0001). Finally, a Fisher’s z-transformation was applied to normalize the corrected correlation 
coefficients within the functional matrices.

Merging trajectory analysis of the human brain connectome.  In-house Matlab code was developed 
to investigate the spatiotemporal configuration of the human brain connectome as minimal graphs, aiming to 
capture its segregating and integrating properties while respecting its principles: efficiency maximization and 
energy cost minimization. In this sense, our graph-based merging trajectory analysis is intended to reduce the 
complexity of the functional connectome to a manageable expression that still conserves all the information 
of local connections and distributed large-scale networks, namely minimal graphs (see Fig. 1-II). The merging 
trajectory analysis was done at the individual level using a whole-brain voxel-wise analytical approach. The FDR-
corrected functional matrices from the prior step were used as input in this analysis. To reduce dimensionality of 
the network, we selectively merge pairs of nodes which share high connectivity patterns. To determine whether 
or not to merge two nodes, we compute the weighted degree of all common and distinct links between these two 
of nodes. If the weighted degree of the shared links is greater than the weighted degree of the distinct links, then 
we merge the two nodes. If the weighted degree of distinct links is higher than that of the shared links, then we 
proceed to the next set of nodes. This process is performed iteratively, beginning with the strongest connections 
in the network and moving in descending order through the network, until we have obtained the minimal graph. 
The connectivity of the merged node is computed as the mean strength for each link. Following this method, the 
rest of the nodes are successively organized and included to this network. In Supplementary Fig. 3 two different 
moments (one earlier and one later) of the merging process have been represented from a graph perspective 
to illustrate how the merging trajectory is computed. Additionally, we tested whether using our merging rule 
against using a random merging rule generated different connectivity results. In Supplementary Fig. 4 a com-
parison of how cumulative number of segregated and integrated links vary during the merging process can be 
found, where the logarithmic of the number of links has been plotted for the rule described in here vs. a random 
rule. It is possible to observe that a random rule does not perform well the merging process, and using the rule 
described in here a high difference in the amount of segregated and integrated links merged through time, indi-
cating that the rule follows a pattern rather than selecting indistinctively segregated or integrated links. Once 
the merging trajectory analysis is applied to each participant’s data, the next step consisted in estimating the best 
curve-fitting model to the data. Two different regression models were applied: logarithmic fit and exponential fit. 
Next, the data was normalized at the individual level, and mean group-level matrices for each regression model 
were obtained. The CARET software (http://​brain​vis.​wustl.​edu/​wiki/​index.​php/​Caret:​About) was used for pro-
jecting the network results on to brain volume (see Fig. 1-III).

Neuroimaging, genes and evolution of the central nervous system.  To study the relation between 
connectomics and genetics, we followed the approach described in previous research (e.g.,16,25,29,43), however, we 
have updated our pipeline according to a recent publication70. We used the Allen Human Brain Atlas (AHBA)42 
to investigate the spatial similarities between protein-coding genetic profiles and the functional connectivity 
profiles obtained in the previous step. For this analysis we used the mean FC map, which was obtained by sub-
tracting the early-mergers network map minus the late-mergers network map. The AHBA provides whole-brain 
genome-wide expression patterns for six human subjects27. For the spatial similarity strategy, we used the surface 
anatomical transformation of the transcription profiles, which includes 20,737 protein-coding genes, based on 
58,692 measurements of gene expression in 3702 brain samples obtained from those 6 adult human subjects71. 
The surface anatomical transformation is based on the 68 cortical regions of the Desikan-Killiany atlas72, which 
covers the entire cortex and uses individual vectors of the median cortical expression of the genes across the 68 
cortical regions. Specifically, three processing stages were followed to derive the Desikan projected transcrip-
tome data: (i) expression values from multiple probes were mean averaged for each gene; (ii) each sample was 
mapped to a cortical region of the Freesurfer Desikan atlas. All samples with an anatomical annotation (provided 
by Allen Institute) located outside the cortex were removed. Samples within the Desikan atlas cortical regions 
were automatically mapped and an extensive review of the Allen samples outside these voxels was made (56% 
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of all cortical samples). The closest Desikan cortical region and the Allen reference atlas annotation were used 
to weight the mapping decisions; and, (iii) the average genetic expression across all samples was mapped into a 
specific Desikan atlas region, and this process was computed for each individual brain. A group expression map 
was derived computing the median values between the 6 donors. The specific steps of our connectomics-genetics 
pipeline are as follow: (step I) the brain phenotype map—mean connectivity map obtained by subtracting the 
early-mergers network map minus the late-mergers network map—was spatially correlated with ~ 20,000 genes 
from the AHBA. The obtained correlation values, represented by ± 1.96 standard deviation, were stored. (step 
II) 1000 surrogate maps with spatial autocorrelation matching the original image were generated using BrainS-
MASH (Burt et al. 2020 numbered citation). For each of the surrogate maps, two additional computational steps 
were completed: (a) a correlation with the ~ 20,000 genes included in the AHBA, saving all the genes with a cor-
relation higher than the cut-off value obtained in the first point. We used this threshold instead of computing the 
threshold on the new distribution to avoid obtaining correlation values arising due to spatial autocorrelation; 
and (b) an overrepresentation analysis of the obtained list of genes using a Fisher test, where a p value and fold 
enrichment were computed for each annotation. (step III) Overrepresentation of the upper and lower bounds 
of the original distribution were computed: for each annotation, a Fisher test was applied, and the obtained p 
value was compared with the p values obtained for the surrogate maps in the same annotation. A p value was 
computed indicating how likely that annotation can appear in the surrogate maps. False discovery rate was used 
to correct this p values for multiple comparisons. The p values that did not survive the multiple comparisons 
test were discarded. (step IV) To help the interpretation of the results, the resulting annotations were grouped 
into clusters based on a similarity approach73. The following steps were done for clustering the annotations: (a) a 
binary gene-term matrix was generated. Genes belonging to a particular term had a value of 1 and 0 otherwise; 
(b) a term-term kappa score matrix was generated. Each entry measured the similarity of 2 terms with kappa 
score based on observed occurrence of genes and was compared to chance occurrence; (c) hierarchical clustering 
was applied were terms with a kappa threshold > 0.3 were merged; (d) for each cluster the term with the most 
significant p value was used as the representative term. Finally, (step V) the enrichment analysis has been carried 
out for Cellular Components terms from Gene Ontology (the reference genome and Gene Ontology annotations 
were retrieved from http://​www.​webge​stalt.​org/ on 01/14/2019). Additional analysis details were as follow: (a) 
genes that were not annotated as Cellular Components were not used for the analyses; (b) terms with less than 5 
or more than 2000 genes were removed; (c) annotations with less than 3 genes overlapping with the candidate 
gene list or with less than an uncorrected p value of 0.01 (Fisher test) were discarded. The spatial similarity analy-
sis was done by means of in-house Matlab code. We built a null hypothesis distribution by comparing the entire 
transcriptome with the mean subtraction map, and applied cut-off thresholds to identify the most relevant genes. 
To test that the correlations were not due to spatial autocorrelated properties we generated 1,000 surrogate maps 
with spatial autocorrelation matching to original image using BrainSMASH software74. To generate SA-preserv-
ing surrogate brain maps, BrainSMASH produces random maps whose variograms are approximately matched 
to a target brain map’s variogram. A distribution with 20,736,000 correlations was generated (1000 random 
maps × 20,736 genes) to test the correlations threshold for a statistically significant correlation p value < 0.05. 
In the positive tail of the distribution, correlations higher than 0.4672 are defined as significant and not due to 
spatial autocorrelation properties. Similarly, in the negative tail, a correlation of -0.4690 would be significant. For 
the subsequent overrepresentation analysis, we took genes with correlation higher than r = 0.6421 and lower than 
r =  − 0.6481 ( ± 1.96 standard deviation from the original correlation distribution), where all of them are statisti-
cally significant based on this permutation analysis (p value < 0.0014) (see Supplementary materials, Tables 1–6).

The Ensembl resource (https://​www.​ensem​bl.​org/;53) was used to compare different species from the Homo 
Sapiens lineage to the Homo Sapiens itself (i.e., homologue-orthologue comparison). The seven species com-
pared were: the chimpanzee (Pan Troglodytes), the gorilla (Gorilla Gorilla), the orangutan (Pongo), the macaque 
(Macaca), the olive baboon (Papio Anubis), the vervet AGM (Chlorocebus pygerythrus), and the marmoset (Call-
inthinx Jacchus). The selection of the species was based on phylogenic divergence time (in million years: 6.6 8.8, 
15.8, 29.4, 29.4, 29.4, 43.2, respectively; https://​www.​ensem​bl.​org/​info/​about/​speci​estree.​html), which indicates 
important biological landmarks such as changes in genomic configuration. The specific data extracted from the 
Ensembl resource were the dN value and the dS value, that we used to calculate the dN/dS ratio. This measure 
has been indicated to be useful for assessing the strength of natural selection acting on protein-coding genes75. 
In evolutionary biology studies, dN/dS ratio has been widely used because it has a straightforward interpretation: 
the excess rate of amino acid-replacing non-synonymous substitution compared to silent synonymous substitu-
tion (ω > 1) indicates positive, adaptive, or diversifying selection, while the reverse direction (ω < 1) indicates 
negative or purifying selection76. In this sense, it is an informative measure of the evolutionary rates of protein-
coding genes, or in other words, biological features that have been conserved in the species during evolutionary 
adaptive periods75. The main reason for using the dN/dS ratio is its ability to capture non-synonymous muta-
tions. While synonymous mutations are mostly considered as having neutral effects on the organisms (i.e., do 
not change the sequence of amino acids of protein coding genes), non-synonymous mutations can be positive 
(advantageous) or negative (deleterious). This distinction is important because neutral mutations occur at the 
same rate as genomic mutations (μN), but positive and negative mutations are affected by natural selection (μS), 
occur at faster or slower rate respectively, and are different than neutral mutations (μN ≠ μS). When calculating 
the rate synonymous: non-synonymous we are calculating the mode of natural selection, introducing the time 
of divergence (in the sequence alignment of the orthologues genes within a phylogeny) in the equation allows to 
measure the strength of the mutation (dN = tμN and dS = tμN), thus leading to ω = dN/dS (see75). When perform-
ing this analysis, the following parameters were selected in BioMart software53: (i) the human gene GRCh38.p13 
as dataset; (ii) the set of genes specifically related to each cellular component annotation as the external input 
in the filter section; (iii) and as attributes for the comparison the homologues option and the orthologues (dN, 
dS) for each species. To automatize this process, we used R software77 was used to retrieve the dN and the dS 

http://www.webgestalt.org/
https://www.ensembl.org/
https://www.ensembl.org/info/about/speciestree.html


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19692  | https://doi.org/10.1038/s41598-021-99082-6

www.nature.com/scientificreports/

values from a public database. The obtained data were saved to a database, where the dN/dS ratio was calculated 
for each annotation and each species homologue-orthologue comparison (dividing the dN value by dS value), 
and the averaged dN/dS ratio was used for subsequent regression analysis. Using IBM SPSS Statistics software 
(version 28 Armonk, New York, USA), regression models were calculated for studying the relationship between 
the mean dN/dS ratio and the years of evolution of the species. This analysis was done using a curve estimation 
module within the regression analysis tool of the SPSS Statistics, where the years of evolution were entered as 
independent variable and the mean dN/dS ratio of each homologue-orthologue comparison, and each cellular 
component annotation was introduced as dependent variable. Regression models were done separately for the 
upper or lower bound of the null hypothesis distribution. Four different fitting models were tested: linear, loga-
rithmic, quadratic and exponential; the best curve fitting amongst these four regression models was selected in 
terms of R2, F-statistic and p value.

In order to test the robustness of the regression analysis, a random permutation analysis approach was used 
to build null distributions and calculate a corrected p value per regression model. The following steps were 
followed for each original regression model that surpassed the multiple-comparisons threshold correction (p 
value < 0.05): (i) generating 100 sample lists with N genes in each new list (N as the total number of genes from 
the original component list) by means of in-house code using Matlab that followed these steps: first, loading the 
original list and excluding from the analysis the genes that were already present in the original component list; 
second, randomly selecting N genes from the 20,737 protein-coding genes from the AHBA42. In this step we used 
the Matlab randperm function (https://​www.​mathw​orks.​com/​help/​matlab/​ref/​randp​erm.​html); (ii) repeating 
the homologue-orthologue comparison between humans and the other seven Homo Sapiens species like in the 
original analysis: obtaining for each new list the dN score and dS score using R software to access the Ensembl-
BioMart environment and computing the mean dN/dS ratio for each species; (iii) running the curve fitting 
estimation analysis in R-software and IBM SPSS Statistics (version 28) using the mean dN/dS ratios for the seven 
non-human primates and the evolutionary divergence times as input data, and obtaining R2, F-static and p value 
for each iteration. In this step the selected model for the new list matched the best curve fitting model for the 
original analysis (e.g., if the original list of the Neuron projection component was best fitted with an exponential 
function, then the same regression model was used for fitting the data in the new one hundred samples). From 
this analysis the normalized determination coefficients (null distribution) were saved for the next step; (iv) cal-
culating the corrected p value for the original list: first, calculating the mean and the standard deviation of the 
null distribution (normalized determination coefficients); second, obtaining the z-score for the original p value 
(i.e., using the mean and the standard deviation from the previous step); third, obtaining the corrected p value 
by calculating the cumulative distribution function using the Matlab Mathworks normcdf function.

Data availability
The functional MRI data and the genetic data that supports the findings of this study are available from the Brain 
Genomics Superstruct Project GSP (http://​neuro​infor​matics.​harva​rd.​edu/​gsp), the Allen Human Brain Atlas 
project (https://​portal.​brain-​map.​org).

Code availability
All codes for imaging analysis are available for the research community from the corresponding author (J.S.) 
upon reasonable request.

Received: 18 April 2021; Accepted: 7 September 2021

References
	 1.	 Van Essen, D. C., Donahue, C. J. & Glasser, M. F. Development and evolution of cerebral and cerebellar cortex. Brain Behav. Evol. 

91, 158–169 (2018).
	 2.	 Franchini, L. F. & Pollard, K. S. Human evolution: The non-coding revolution. BMC Biol. 15, 1–12 (2017).
	 3.	 Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, 

and development. Cell 170, 226–247 (2017).
	 4.	 Bae, B. I., Jayaraman, D. & Walsh, C. A. Genetic changes shaping the human brain. Dev. Cell 32, 423–434 (2015).
	 5.	 Preuss, T. M. Human brain evolution: From gene discovery to phenotype discovery. Proc. Natl. Acad. Sci. U. S. A. 109, 10709–10716 

(2012).
	 6.	 Relethford, J. H. Genetic evidence and the modern human origins debate. Heredity (Edinb.) 100, 555–563 (2008).
	 7.	 Robson, S. L. & Wood, B. Hominin life history: Reconstruction and evolution. J. Anat. 212, 394–425 (2008).
	 8.	 Sherwood, C. C., Subiaul, F. & Zawidzki, T. W. A natural history of the human mind: Tracing evolutionary changes in brain and 

cognition. J. Anat. 212, 426–454 (2008).
	 9.	 Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358, 1027–1032 (2017).
	10.	 Lieberman, P. The evolution of language and thought. J. Anthropol. Sci. 94, 127–146 (2016).
	11.	 Lord, L. D., Stevner, A. B., Deco, G. & Kringelbach, M. L. Understanding principles of integration and segregation using whole-

brain computational connectomics: Implications for neuropsychiatric disorders. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 
20160283 (2017).

	12.	 Tognoli, E. & Kelso, J. A. S. The metastable brain. Neuron 81, 35–48 (2014).
	13.	 Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: Contributions of whole-brain model-

ling. Nat. Rev. Neurosci. 16, 430–439 (2015).
	14.	 Benito-Aragón, C. et al. Neurofilament-lysosomal genetic intersections in the cortical network of stuttering. Prog. Neurobiol. 184, 

101718 (2020).
	15.	 Xin, Q. et al. Sequence alterations of cortical genes linked to individual connectivity of the human brain. Cereb. Cortex 29, 

3828–3835 (2019).
	16.	 Ortiz-Terán, L. et al. Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children. 

Proc. Natl. Acad. Sci. U. S. A. 114, 6830–6835 (2017).

https://www.mathworks.com/help/matlab/ref/randperm.html
http://neuroinformatics.harvard.edu/gsp
https://portal.brain-map.org


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19692  | https://doi.org/10.1038/s41598-021-99082-6

www.nature.com/scientificreports/

	17.	 Parkes, L., Fulcher, B. D., Yücel, M. & Fornito, A. Transcriptional signatures of connectomic subregions of the human striatum. 
Genes Brain Behav. 16, 647–663 (2017).

	18.	 Romme, I. A. C., de Reus, M. A., Ophoff, R. A., Kahn, R. S. & van den Heuvel, M. P. Connectome disconnectivity and cortical gene 
expression in patients with schizophrenia. Biol. Psychiatry 81, 495–502 (2017).

	19.	 Rittman, T. et al. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment 
in Parkinson disease and progressive supranuclear palsy. Neurobiol. Aging 48, 153–160 (2016).

	20.	 Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).
	21.	 Wiesner, C. et al. Lasp-1 regulates podosome function. PLoS ONE 7, 1–10 (2012).
	22.	 Patania, A. et al. Topological gene expression networks recapitulate brain anatomy and function. Netw. Neurosci. 3, 744–762 (2019).
	23.	 Cioli, C., Abdi, H., Beaton, D., Burnod, Y. & Mesmoudi, S. Differences in human cortical gene expression match the temporal 

properties of large-scale functional networks. PLoS ONE 9, e115913 (2014).
	24.	 Anderson, K. M. et al. Gene expression links functional networks across cortex and striatum. Nat. Commun. 9, 1–14 (2018).
	25.	 Diez, I. & Sepulcre, J. Neurogenetic profiles delineate large-scale connectivity dynamics of the human brain. Nat. Commun. 9, 

1–10 (2018).
	26.	 McColgan, P. et al. Brain regions showing white matter loss in Huntington’s disease are enriched for synaptic and metabolic genes. 

Biol. Psychiatry 83, 456–465 (2018).
	27.	 Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
	28.	 Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H. & Johnson, K. A. Stepwise connectivity of the modal cortex reveals the multimodal 

organization of the human brain. J. Neurosci. 32, 10649–10661 (2012).
	29.	 Sepulcre, J. et al. Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat. Med. 24, 1910–1918 

(2018).
	30.	 Romero-Garcia, R. et al. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of 

the human cortex. Neuroimage 171, 256–267 (2018).
	31.	 Forest, M. et al. Gene networks show associations with seed region connectivity. Hum. Brain Mapp. 38, 3126–3140 (2017).
	32.	 Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).
	33.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of "small-world" networks. Nature 393, 440–442 (1998).
	34.	 Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav. Brain Res. 

135 69–74 (2002).
	35.	 Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and Schizophrenia. J. Neurosci. 28, 9239–9248 

(2008).
	36.	 Bullmore, E. T. & Bassett, D. S. Brain graphs: Graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 

113–140 (2011).
	37.	 Sepulcre, J. et al. The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6, e1000808 

(2010).
	38.	 Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends 

Cogn. Sci. 8, 418–425 (2004).
	39.	 Bassett, D. S. & Bullmore, E. T. Human brain networks in health. Curr Opin Neurol. 10, 324–336 (2009).
	40.	 Bassett, D. S. & Bullmore, E. T. Small-world brain networks revisited. Neuroscientist 23, 499–516 (2017).
	41.	 Sporns, O. Graph theory methods: Applications in brain networks. Dialogues Clin. Neurosci. 20, 111–120 (2018).
	42.	 Shen, E. H., Overly, C. C. & Jones, A. R. The Allen human brain atlas. Trends Neurosci. 35, 711–714 (2012).
	43.	 Bueichekú, E. et al. Central neurogenetic signatures of the visuomotor integration system. Proc. Natl. Acad. Sci. U. S. A. 117, 

6836–6843 (2020).
	44.	 Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).
	45.	 Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. 

Brain Res. 125, 279–284 (2001).
	46.	 Buckner, R. L., Krienen, F. M. & Yeo, B. T. T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 

16, 832–837 (2013).
	47.	 Preuss, T. M. The human brain: Rewired and running hot. Ann. N. Y. Acad. Sci. 1225, 182–191 (2011).
	48.	 Murphy, K., Birn, R. M. & Bandettini, P. A. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013).
	49.	 Craddock, R. C., Milham, M. P. & LaConte, S. M. Predicting intrinsic brain activity. Neuroimage 82, 127–136 (2013).
	50.	 Jones, A. R., Overly, C. C. & Sunkin, S. M. The allen brain atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821–828 (2009).
	51.	 Goel, P., Kuceyeski, A., Locastro, E. & Raj, A. Spatial patterns of genome-wide expression profiles reflect anatomic and fiber con-

nectivity architecture of healthy human brain. Hum. Brain Mapp. 35, 4204–4218 (2014).
	52.	 Vértes, P. E. et al. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional 

magnetic resonance imaging networks. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150362 (2016).
	53.	 Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).
	54.	 Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 

(2013).
	55.	 Mendoza, G. & Merchant, H. Motor system evolution and the emergence of high cognitive functions. Prog. Neurobiol. 122, 73–93 

(2014).
	56.	 Enard, W. The molecular basis of human brain evolution. Curr. Biol. 26, R1109–R1117 (2016).
	57.	 Holloway, R. L., Broadfield, D. C. & Yuan, M. S. The Human Fossil Record. The Human Fossil Record Vol. 3 (Wiley, 2004).
	58.	 Holloway, R. Brain size, allometry, and reorganization: Toward a synthesis. In Development and evolution of brain size: Behavioral 

implications (eds Hahn, M. E. et al.) 59–88 (Academic Press, 1979).
	59.	 Sherwood, C. C., Bauernfeind, A. L., Bianchi, S., Raghanti, M. A. & Hof, P. R. Human Brain Evolution Writ Large and Small. Progress 

in Brain Research Vol. 195 (Elsevier B.V., Berlin, 2012).
	60.	 Changizi, M. A. Principles underlying mammalian neocortical scaling. Biol. Cybern. 84, 207–215 (2001).
	61.	 Somel, M., Liu, X. & Khaitovich, P. Human brain evolution: Transcripts, metabolites and their regulators. Nat. Rev. Neurosci. 14, 

112–127 (2013).
	62.	 Sholtis, S. J. & Noonan, J. P. Gene regulation and the origins of human biological uniqueness. Trends Genet. 26, 110–118 (2010).
	63.	 Laland, K. N., Odling-Smee, J. & Myles, S. How culture shaped the human genome: Bringing genetics and the human sciences 

together. Nat. Rev. Genet. 11, 137–148 (2010).
	64.	 Vallender, E. J., Mekel-Bobrov, N. & Lahn, B. T. Genetic basis of human brain evolution. Trends Neurosci. 31, 637–644 (2008).
	65.	 Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).
	66.	 Holmes, A. J. et al. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. 

Sci. Data 2, 150031 (2015).
	67.	 Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1, 

S208–S219 (2004).
	68.	 Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and 

motion correction of brain images. Neuroimage 17, 825–841 (2002).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19692  | https://doi.org/10.1038/s41598-021-99082-6

www.nature.com/scientificreports/

	69.	 Van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neu-
roimage 59, 431–438 (2012).

	70.	 Fulcher, B. D., Arnatkeviciute, A. & Fornito, A. Overcoming false-positive gene-category enrichment in the analysis of spatially 
resolved transcriptomic brain atlas data. Nat. Commun. 12, 1–13 (2021).

	71.	 French, L. & Paus, T. A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas. Front. Neurosci. 
9, 323 (2015).

	72.	 Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions 
of interest. Neuroimage 31, 968–980 (2006).

	73.	 Sherman, B. T. et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally 
analyze large gene lists. Genome Biol. 8, 1–16 (2007).

	74.	 Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. 
Neuroimage 220, 117038 (2020).

	75.	 Jeffares, D. C., Tomiczek, B., Sojo, V. & dos Reis, M. A beginners guide to estimating the non-synonymous to synonymous rate 
ratio of all protein-coding genes in a genome. Methods Mol. Biol. 1201, 65–90 (2015).

	76.	 Wilson, D. J. et al. GenomegaMap: Within-Species Genome-Wide dN/dS Estimation from over 10,000 Genomes. Mol. Biol. Evol. 
37, 2450–2460 (2020).

	77.	 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2021).

Acknowledgements
This research was supported by grants from the National Institutes of Health (NIH) (R01AG061811, and 
R01AG061445 to J.S.). J.S. has no disclosures to report. E.B. was funded by a research stay grant from the Span-
ish Government (2017 José Castillejo for young Ph.D. researchers) and a postdoctoral research grant from the 
Generalitat Valenciana and the European Social Fund (“Investing in your future”; 2018 APOSTD).

Author contributions
E.B., J.M.G-E., I.D., S.B., J.S. designed research. E.B., I.D., S.B., J.S. performed research. E.B., I.D., S.B., J.S. ana-
lyzed data. E.B., J.M.G-E., L.O.-T, V.M., F.d.U., L. D., W.O., C.K., E. O.-T., S. B., I. D., J. S. wrote the paper. J.S. is 
the corresponding author.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​99082-6.

Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-99082-6
https://doi.org/10.1038/s41598-021-99082-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Divergent connectomic organization delineates genetic evolutionary traits in the human brain
	Results
	Divergent trajectories of segregation and integration connectivity in the human brain. 
	Intersection between human brain connectomics, genetics and evolution. 

	Discussion
	Conclusions
	Methods
	Participants. 
	Data acquisition. 
	Image pre-processing. 
	Image post-processing: functional matrices. 
	Merging trajectory analysis of the human brain connectome. 
	Neuroimaging, genes and evolution of the central nervous system. 

	References
	Acknowledgements


